Multiscale Multiphysics and Multidomain Models I: Basic Theory.

نویسنده

  • Guo-Wei Wei
چکیده

This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long-range Coulombic interactions, various non-electrostatic solvent-solute interactions are considered in the present modeling. We demonstrate the consistency between the non-equilibrium charge transport model and the equilibrium solvation model by showing the systematical reduction of the former to the latter at equilibrium. This paper also offers a brief review of the field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Organising Principles for Coupling in Multiphysics and Multiscale Models

Computational science faces new challenges posed by multiphysics and multiscale, or more generally put, coupled models. These systems are composites formed from separate subsystem models that interact via data exchanges. These data dependencies pose a coupling problem, and on distributed-memory computers, a parallel coupling problem. This paper presents a definition of terms and a set of organi...

متن کامل

Multiscale multiphysics and multidomain models--flexibility and rigidity.

The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and ...

متن کامل

A posteriori error analysis of multiscale operator decomposition methods for multiphysics models

Multiphysics, multiscale models present significant challenges in terms of computing accurate solutions and for estimating the error in information computed from numerical solutions. In this paper, we describe recent advances in extending the techniques of a posteriori error analysis to multiscale operator decomposition solution methods. While the particulars of the analysis vary considerably w...

متن کامل

Simulation of Multiphysics Multiscale Systems: Introduction to the ICCS'2007 Workshop

Modeling and simulation of multiphysics multiscale systems poses a grand challenge to computational science. To adequately simulate numerous intertwined processes characterized by different spatial and temporal scales (often spanning many orders of magnitude), sophisticated models and advanced computational techniques are required. The aim of the workshop on Simulation of Multiphysics Multiscal...

متن کامل

Simulation of Multiphysics Multiscale Systems, 7th International Workshop. In International Conference on Computational Science, ICCS 2010 BS: a spatial shape-based scale-independent simulation environment for biological systems

The simulation and visualization of biological system models is becoming more and more important both in clinical use and in basic research. Since many systems are characterized by interactions involving different scales at the same time, several approaches have been defined to handle such complex systems at different spatial and temporal scale. In this context, we propose BS, a 3D partic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical & computational chemistry

دوره 12 8  شماره 

صفحات  -

تاریخ انتشار 2013